Struct chrono::naive::time::NaiveTime
[−]
[src]
pub struct NaiveTime { /* fields omitted */ }
ISO 8601 time without timezone. Allows for the nanosecond precision and optional leap second representation.
Chrono has a notable policy on the leap second handling, designed to be maximally useful for typical users.
Methods
impl NaiveTime
[src]
fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*
methods with a subsecond parameter instead.
Panics on invalid hour, minute and/or second.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms(23, 56, 4); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 0);
fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*_opt
methods with a subsecond parameter instead.
Returns None
on invalid hour, minute and/or second.
Example
use chrono::NaiveTime; let from_hms_opt = NaiveTime::from_hms_opt; assert!(from_hms_opt(0, 0, 0).is_some()); assert!(from_hms_opt(23, 59, 59).is_some()); assert!(from_hms_opt(24, 0, 0).is_none()); assert!(from_hms_opt(23, 60, 0).is_none()); assert!(from_hms_opt(23, 59, 60).is_none());
fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or millisecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_milli(23, 56, 4, 12); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_000_000);
fn from_hms_milli_opt(hour: u32,
min: u32,
sec: u32,
milli: u32)
-> Option<NaiveTime>
min: u32,
sec: u32,
milli: u32)
-> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or millisecond.
Example
use chrono::NaiveTime; let from_hmsm_opt = NaiveTime::from_hms_milli_opt; assert!(from_hmsm_opt(0, 0, 0, 0).is_some()); assert!(from_hmsm_opt(23, 59, 59, 999).is_some()); assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59 assert!(from_hmsm_opt(24, 0, 0, 0).is_none()); assert!(from_hmsm_opt(23, 60, 0, 0).is_none()); assert!(from_hmsm_opt(23, 59, 60, 0).is_none()); assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none());
fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or microsecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_micro(23, 56, 4, 12_345); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_000);
fn from_hms_micro_opt(hour: u32,
min: u32,
sec: u32,
micro: u32)
-> Option<NaiveTime>
min: u32,
sec: u32,
micro: u32)
-> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or microsecond.
Example
use chrono::NaiveTime; let from_hmsu_opt = NaiveTime::from_hms_micro_opt; assert!(from_hmsu_opt(0, 0, 0, 0).is_some()); assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some()); assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59 assert!(from_hmsu_opt(24, 0, 0, 0).is_none()); assert!(from_hmsu_opt(23, 60, 0, 0).is_none()); assert!(from_hmsu_opt(23, 59, 60, 0).is_none()); assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none());
fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_678);
fn from_hms_nano_opt(hour: u32,
min: u32,
sec: u32,
nano: u32)
-> Option<NaiveTime>
min: u32,
sec: u32,
nano: u32)
-> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or nanosecond.
Example
use chrono::NaiveTime; let from_hmsn_opt = NaiveTime::from_hms_nano_opt; assert!(from_hmsn_opt(0, 0, 0, 0).is_some()); assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some()); assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59 assert!(from_hmsn_opt(24, 0, 0, 0).is_none()); assert!(from_hmsn_opt(23, 60, 0, 0).is_none()); assert!(from_hmsn_opt(23, 59, 60, 0).is_none()); assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none());
fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid number of seconds and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_num_seconds_from_midnight(86164, 12_345_678); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_678);
fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid number of seconds and/or nanosecond.
Example
use chrono::NaiveTime; let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt; assert!(from_nsecs_opt(0, 0).is_some()); assert!(from_nsecs_opt(86399, 999_999_999).is_some()); assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59 assert!(from_nsecs_opt(86400, 0).is_none()); assert!(from_nsecs_opt(86399, 2_000_000_000).is_none());
fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>
Parses a string with the specified format string and returns a new NaiveTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::NaiveTime; let parse_from_str = NaiveTime::parse_from_str; assert_eq!(parse_from_str("23:56:04", "%H:%M:%S"), Ok(NaiveTime::from_hms(23, 56, 4))); assert_eq!(parse_from_str("pm012345.6789", "%p%I%M%S%.f"), Ok(NaiveTime::from_hms_micro(13, 23, 45, 678_900)));
Date and offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(NaiveTime::from_hms(12, 34, 56)));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(parse_from_str("08:59:60.123", "%H:%M:%S%.f"), Ok(NaiveTime::from_hms_milli(8, 59, 59, 1_123)));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("7:15", "%H:%M"), Ok(NaiveTime::from_hms(7, 15, 0))); assert!(parse_from_str("04m33s", "%Mm%Ss").is_err()); assert!(parse_from_str("12", "%H").is_err()); assert!(parse_from_str("17:60", "%H:%M").is_err()); assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it's an error.
Here %H
is for 24-hour clocks, unlike %I
,
and thus can be independently determined without AM/PM.
assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err());
fn overflowing_add_signed(&self, rhs: OldDuration) -> (NaiveTime, i64)
Adds given Duration
to the current time,
and also returns the number of seconds
in the integral number of days ignored from the addition.
(We cannot return Duration
because it is subject to overflow or underflow.)
Example
use chrono::NaiveTime; use time::Duration; let from_hms = NaiveTime::from_hms; assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(11)), (from_hms(14, 4, 5), 0)); assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(23)), (from_hms(2, 4, 5), 86400)); assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(-7)), (from_hms(20, 4, 5), -86400));
fn overflowing_sub_signed(&self, rhs: OldDuration) -> (NaiveTime, i64)
Subtracts given Duration
from the current time,
and also returns the number of seconds
in the integral number of days ignored from the subtraction.
(We cannot return Duration
because it is subject to overflow or underflow.)
Example
use chrono::NaiveTime; use time::Duration; let from_hms = NaiveTime::from_hms; assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(2)), (from_hms(1, 4, 5), 0)); assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(17)), (from_hms(10, 4, 5), 86400)); assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(-22)), (from_hms(1, 4, 5), -86400));
fn signed_duration_since(self, rhs: NaiveTime) -> OldDuration
Subtracts another NaiveTime
from the current time.
Returns a Duration
within +/- 1 day.
This does not overflow or underflow at all.
As a part of Chrono's leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
Example
use chrono::NaiveTime; use time::Duration; let from_hmsm = NaiveTime::from_hms_milli; let since = NaiveTime::signed_duration_since; assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)), Duration::zero()); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)), Duration::milliseconds(25)); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)), Duration::milliseconds(975)); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)), Duration::seconds(7)); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)), Duration::seconds(5 * 60)); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)), Duration::seconds(3 * 3600)); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)), Duration::seconds(-3600)); assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)), Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)), Duration::seconds(1)); assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)), Duration::milliseconds(1500)); assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)), Duration::seconds(60)); assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)), Duration::seconds(1)); assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)), Duration::seconds(61));
fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I> where I: Iterator<Item=Item<'a>> + Clone
Formats the time with the specified formatting items.
Otherwise it is same to the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveTime; use chrono::format::strftime::StrftimeItems; let fmt = StrftimeItems::new("%H:%M:%S"); let t = NaiveTime::from_hms(23, 56, 4); assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04"); assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04");
fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
Formats the time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveTime; let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04"); assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345"); assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04"); assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345"); assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM");
Trait Implementations
impl Add<FixedOffset> for NaiveTime
[src]
type Output = NaiveTime
The resulting type after applying the +
operator
fn add(self, rhs: FixedOffset) -> NaiveTime
The method for the +
operator
impl Sub<FixedOffset> for NaiveTime
[src]
type Output = NaiveTime
The resulting type after applying the -
operator
fn sub(self, rhs: FixedOffset) -> NaiveTime
The method for the -
operator
impl PartialEq for NaiveTime
[src]
fn eq(&self, __arg_0: &NaiveTime) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, __arg_0: &NaiveTime) -> bool
This method tests for !=
.
impl Eq for NaiveTime
[src]
impl PartialOrd for NaiveTime
[src]
fn partial_cmp(&self, __arg_0: &NaiveTime) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, __arg_0: &NaiveTime) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, __arg_0: &NaiveTime) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, __arg_0: &NaiveTime) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, __arg_0: &NaiveTime) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl Ord for NaiveTime
[src]
fn cmp(&self, __arg_0: &NaiveTime) -> Ordering
This method returns an Ordering
between self
and other
. Read more
impl Copy for NaiveTime
[src]
impl Clone for NaiveTime
[src]
fn clone(&self) -> NaiveTime
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl Timelike for NaiveTime
[src]
fn hour(&self) -> u32
Returns the hour number from 0 to 23.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).hour(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).hour(), 23);
fn minute(&self) -> u32
Returns the minute number from 0 to 59.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).minute(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).minute(), 56);
fn second(&self) -> u32
Returns the second number from 0 to 59.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).second(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).second(), 4);
This method never returns 60 even when it is a leap second. (Why?) Use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000); assert_eq!(leap.second(), 59); assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
fn nanosecond(&self) -> u32
Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).nanosecond(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).nanosecond(), 12_345_678);
Leap seconds may have seemingly out-of-range return values.
You can reduce the range with time.nanosecond() % 1_000_000_000
, or
use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000); assert_eq!(leap.nanosecond(), 1_000_000_000); assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
fn with_hour(&self, hour: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the hour number changed.
Returns None
when the resulting NaiveTime
would be invalid.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano(7, 56, 4, 12_345_678))); assert_eq!(dt.with_hour(24), None);
fn with_minute(&self, min: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the minute number changed.
Returns None
when the resulting NaiveTime
would be invalid.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_minute(45), Some(NaiveTime::from_hms_nano(23, 45, 4, 12_345_678))); assert_eq!(dt.with_minute(60), None);
fn with_second(&self, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the second number changed.
Returns None
when the resulting NaiveTime
would be invalid.
As with the second
method,
the input range is restricted to 0 through 59.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_second(17), Some(NaiveTime::from_hms_nano(23, 56, 17, 12_345_678))); assert_eq!(dt.with_second(60), None);
fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with nanoseconds since the whole non-leap second changed.
Returns None
when the resulting NaiveTime
would be invalid.
As with the nanosecond
method,
the input range can exceed 1,000,000,000 for leap seconds.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_nanosecond(333_333_333), Some(NaiveTime::from_hms_nano(23, 56, 4, 333_333_333))); assert_eq!(dt.with_nanosecond(2_000_000_000), None);
Leap seconds can theoretically follow any whole second. The following would be a proper leap second at the time zone offset of UTC-00:03:57 (there are several historical examples comparable to this "non-sense" offset), and therefore is allowed.
assert_eq!(dt.with_nanosecond(1_333_333_333), Some(NaiveTime::from_hms_nano(23, 56, 4, 1_333_333_333)));
fn num_seconds_from_midnight(&self) -> u32
Returns the number of non-leap seconds past the last midnight.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(1, 2, 3).num_seconds_from_midnight(), 3723); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).num_seconds_from_midnight(), 86164); assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 1_000).num_seconds_from_midnight(), 86399);
fn hour12(&self) -> (bool, u32)
Returns the hour number from 1 to 12 with a boolean flag, which is false for AM and true for PM. Read more
impl Hash for NaiveTime
[src]
NaiveTime
can be used as a key to the hash maps (in principle).
Practically this also takes account of fractional seconds, so it is not recommended. (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
fn hash<H: Hasher>(&self, state: &mut H)
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
1.3.0
Feeds a slice of this type into the state provided.
impl Add<OldDuration> for NaiveTime
[src]
An addition of Duration
to NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::NaiveTime; use time::Duration; let from_hmsm = NaiveTime::from_hms_milli; assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::zero(), from_hmsm(3, 5, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(1), from_hmsm(3, 5, 8, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-1), from_hmsm(3, 5, 6, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(60 + 4), from_hmsm(3, 6, 11, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::milliseconds(80), from_hmsm(3, 5, 7, 80)); assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(280), from_hmsm(3, 5, 8, 230)); assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(-980), from_hmsm(3, 5, 6, 970));
The addition wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(22*60*60), from_hmsm(1, 5, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-8*60*60), from_hmsm(19, 5, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300); assert_eq!(leap + Duration::zero(), from_hmsm(3, 5, 59, 1_300)); assert_eq!(leap + Duration::milliseconds(-500), from_hmsm(3, 5, 59, 800)); assert_eq!(leap + Duration::milliseconds(500), from_hmsm(3, 5, 59, 1_800)); assert_eq!(leap + Duration::milliseconds(800), from_hmsm(3, 6, 0, 100)); assert_eq!(leap + Duration::seconds(10), from_hmsm(3, 6, 9, 300)); assert_eq!(leap + Duration::seconds(-10), from_hmsm(3, 5, 50, 300)); assert_eq!(leap + Duration::days(1), from_hmsm(3, 5, 59, 300));
type Output = NaiveTime
The resulting type after applying the +
operator
fn add(self, rhs: OldDuration) -> NaiveTime
The method for the +
operator
impl Sub<OldDuration> for NaiveTime
[src]
A subtraction of Duration
from NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
It is same to the addition with a negated Duration
.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::NaiveTime; use time::Duration; let from_hmsm = NaiveTime::from_hms_milli; assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(), from_hmsm(3, 5, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1), from_hmsm(3, 5, 6, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5), from_hmsm(3, 4, 2, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80), from_hmsm(3, 5, 6, 920)); assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280), from_hmsm(3, 5, 7, 670));
The subtraction wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0)); assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300); assert_eq!(leap - Duration::zero(), from_hmsm(3, 5, 59, 1_300)); assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100)); assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800)); assert_eq!(leap - Duration::seconds(60), from_hmsm(3, 5, 0, 300)); assert_eq!(leap - Duration::days(1), from_hmsm(3, 6, 0, 300));
type Output = NaiveTime
The resulting type after applying the -
operator
fn sub(self, rhs: OldDuration) -> NaiveTime
The method for the -
operator
impl Debug for NaiveTime
[src]
The Debug
output of the naive time t
is same to
t.format("%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn't matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveTime; assert_eq!(format!("{:?}", NaiveTime::from_hms(23, 56, 4)), "23:56:04"); assert_eq!(format!("{:?}", NaiveTime::from_hms_milli(23, 56, 4, 12)), "23:56:04.012"); assert_eq!(format!("{:?}", NaiveTime::from_hms_micro(23, 56, 4, 1234)), "23:56:04.001234"); assert_eq!(format!("{:?}", NaiveTime::from_hms_nano(23, 56, 4, 123456)), "23:56:04.000123456");
Leap seconds may also be used.
assert_eq!(format!("{:?}", NaiveTime::from_hms_milli(6, 59, 59, 1_500)), "06:59:60.500");
impl Display for NaiveTime
[src]
The Display
output of the naive time t
is same to
t.format("%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn't matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveTime; assert_eq!(format!("{}", NaiveTime::from_hms(23, 56, 4)), "23:56:04"); assert_eq!(format!("{}", NaiveTime::from_hms_milli(23, 56, 4, 12)), "23:56:04.012"); assert_eq!(format!("{}", NaiveTime::from_hms_micro(23, 56, 4, 1234)), "23:56:04.001234"); assert_eq!(format!("{}", NaiveTime::from_hms_nano(23, 56, 4, 123456)), "23:56:04.000123456");
Leap seconds may also be used.
assert_eq!(format!("{}", NaiveTime::from_hms_milli(6, 59, 59, 1_500)), "06:59:60.500");
impl FromStr for NaiveTime
[src]
Parsing a str
into a NaiveTime
uses the same format,
%H:%M:%S%.f
, as in Debug
and Display
.
Example
use chrono::NaiveTime; let t = NaiveTime::from_hms(23, 56, 4); assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t)); let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t)); let t = NaiveTime::from_hms_nano(23, 59, 59, 1_234_567_890); // leap second assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t)); assert!("foo".parse::<NaiveTime>().is_err());
type Err = ParseError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> ParseResult<NaiveTime>
Parses a string s
to return a value of this type. Read more